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Much has been learnt and speculated about the form of 2D NMR relaxation spectra of diffusive systems.
Herein we show that the eigen-modes formalism can help to establish a number of fundamental struc-
tural properties, i.e. symmetries, overall intensities, signs and relative intensities of the diagonal and
cross components, of such spectra, on which one can safely rely in analysing experimental data. More
specifically, we prove that the correlation T1–T2 spectra will always have negative peaks, thus making
questionable the nowadays wide spread strategy in developing inverse Laplace transformation
algorithms.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The development of two-dimensional (2D) relaxation tech-
niques is one of the major advances in NMR over the last ten years.
Correlating various relaxation mechanisms rather than Larmor fre-
quencies and chemical shifts, these techniques provide new scope
for the use of ideas originating in the multi-dimensional Fourier
Transformation (FT) spectroscopy [1]. Numerous heterogeneous
systems can’t be studied by the FT spectroscopy either because
their spectra are of no interest or because the acquisition of the lat-
ter is hindered by the intrinsic inhomogeneity in magnetic suscep-
tibility. Relaxation rates can turn out extremely valuable to
identify different constituents or various compartments in such
systems [2]. This is the case of confined fluids in porous media,
in which relaxation rates can be related direct to the pore sizes
[3]; foods, in which various ingredients have distinct relaxation
rates [4]; or complex fluids, such as cements during its setting, in
which the measurement of relaxation rates allows to monitor the
formation of organised structures [5]. Since the late 1980s, one-
dimensional (1D) Inverse Laplace Transformation (ILT) spectros-
copy has allowed observation of relaxation rate distributions in
various materials [6].

Nowadays the 2D ILT spectroscopy, correlating various pro-
cesses that drive relaxation, holds out hope of more in-depth
understanding of composition and dynamics of those materials.
Unlike the FT spectroscopy, its ILT counterpart is also of great inter-
est for those NMR studies where only spectrometers with an exter-
nalised magnet, RF transmitter and receiver coils must be used, e.g.
ll rights reserved.
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NMR-Mouse [7] or GarField [8]. Both types of spectroscopy saw the
light three decades ago or so [9,10]. Constant progress has been
made in the FT spectroscopy ever since, while the early develop-
ment of the ILT spectroscopy was relatively slow. The reason for
this was, as their mere names suggest, that one type of spectros-
copy relies on the FT of raw NMR data collected in experiments
as a function of the time, while the other necessitates the ILT of
the data. The numerical implementation of the multidimensional
FT never posed any fundamental problem. On the contrary, per-
forming the multidimensional ILT numerically had long been a for-
midable task and one had to wait until 2002 to see the first 2D ILT
algorithm that could be run on an ordinary PC [11,12]. This was fol-
lowed by the development of several rather straightforward NMR
experimental schemes, viz. the T1–T2 correlation [11,12], where a
period of spin–spin relaxation follows a period of spin–lattice
relaxation, thus correlating the spin–lattice and spin–spin relaxa-
tion rates; the T2–T2 correlation [13], where two periods of spin–
spin relaxation are separated by a period of fixed duration during
which the spin system is subject to spin–lattice relaxation, and
which correlates the spin–spin relaxation rates with themselves;
as well as the T1–T1 correlation [14], where spin–lattice relaxation
rates are correlated with themselves, and where a period of fixed
duration during which the spin system is subject to spin–spin
relaxation is sandwiched between two periods of spin–lattice
relaxation.

Study of various systems have already benefited from the 2D ILT
spectroscopy, viz. polymers [7], fruits and vegetables [15], cement-
based materials [8], as well as water and oil in rocks [16]. The
relaxation rates T1 and T2 are sometimes completed by other
information, such as molecular diffusion [17] or chemical shifts
[14]. The ratio T1/T2 – a key element in the relaxation analysis-
could be determined direct from correlation spectra T1–T2 [13].
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Observation of cross-peaks in correlation spectra of cements was
the first experimental proof that water migrates between certain
types of pore [13]. Systematic studies of those peaks allow to
measure chemical exchange rates between particular sites [18].

Nevertheless, assignment of various components and interpre-
tation of 2D spectra encountered in ILT spectroscopy is still diffi-
cult [19], as they are subject to defects introduced by the 2D ILT
programmes available to date. These defects, described in litera-
ture [20], consist in each of the large components of the spectrum
bursting into a number of smaller peaks as well as in appearing
spurious peaks. Furthermore, the present algorithm was designed
on a premise that all the components of a spectrum have positive
amplitudes. Recent theoretical studies, though, showed spectra
containing peaks of both signs [21,22]. Thus, a mathematically rig-
orous study of the structure of 2D spectra correlating various relax-
ation rates could, we believe, considerably benefit the future
analysis of experimental data.

Two approaches have been used in the modelling of relaxation
spectra. One of them, largely inspired by the first-order two-site
exchange model [21], has allowed to analyse quantitatively spectra
of numerous systems, but turned out much too specific to permit
by its self to thoroughly understand the fundamental structural
features of the spectra. Another one [22], based on the eigen-
modes formalism, is much more general, but, being rather abstract,
has not attracted enough spectroscopists’ attention. In this report,
we show that within this latter formalism a wealth of useful struc-
tural properties of the spectra can be expressed in a mathemati-
cally rigorous way.

2. Theory

2.1. Diffusive systems

Being placed in the magnet of an NMR spectrometer, porous
media and live tissues can be regarded as diffusive systems, in which
local magnetisation m(r) stems essentially from an interstitial fluid
– often water or oil – free to diffuse in pores. The magnetisation
density difference from its equilibrium value satisfies the equation

/ðrÞ @m
@t
¼ $ðDðrÞ$mÞ � /ðrÞlaðrÞm ð1Þ

where /(r), D and la stand for the local concentration of the fluid,
diffusion tensor and relaxation rate, respectively [2]. The subscript
a = l or 2, depending on whether it deals with spin–lattice or
spin–spin relaxation. At the surface between the fluid and solid
phases of the system, the relaxation rate qa may be much higher
than that la inside the fluid. It is governed by the boundary
condition

nðrÞ � DðrÞ$m ¼ /ðrÞqaðrÞm ð2Þ

where n is the normal unit vector directed towards the inside of the
fluid phase.

2.2. Eigen-modes formalism

This system has orthonormal bases of spin–lattice jW1,n(r)i and
spin–spin jW2,n(r)i relaxation eigen-states with real relaxation ei-
gen-times s1,n and s2,n associated to them [23]. One can then ex-
press [24] the non-equilibrium part of the NMR signal collected
in the inversion-recovery, for T1 measurements, or CPMG, for T2

measurements, experiments as

MaðtÞ ¼ m0

X

n

h1jWa;ni2 expð�t=sa;nÞ ð3Þ

and conclude that corresponding 1D spectra, obtained after the ILT,
has non-zero values only for the times sa,n with positive intensities
STa ðnÞ ¼ m0

X

n

h1jWa;ni2 ð4Þ

where m0 is the magnetisation density at equilibrium and j1i stands
for a homogeneous magnetisation state equal to one all over the
system. Using the same eigen-states, the intensities of the T1–T2

and T2–T2 correlation spectra for coordinates (s1,n,s2,m) and
(s2,n,s2,m) were analytically calculated [22] as

ST1�T2 ðn;mÞ ¼ m0h1jW1;nihW1;njW2;mihW2;mj1i ð5Þ

ST2�T2 ðn;mÞ ¼ m0

X

p

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

� expð�smix=s1;pÞ ð6Þ

where smix is the duration of the mixing period. From physical point
of view, the peaks observed in the spectra indicate a correlation or
exchange between various relaxation modes. We could obtain the
amplitudes of the peaks in the T1–T1 spectrum by exchanging indi-
ces 1 and 2 in Eq. (6).
3. Previous structural results

From Eqs. (5) and (6), the authors of [22] made appear the fol-
lowing important properties, though, largely ignored in numerous
recent experimental studies, and which deserves that we give
them special emphasis

(a) The T2–T2 spectra are symmetrical according to ST2�T2 ðn;mÞ ¼
ST2�T2 ðm;nÞ.

(b) When eigen-modes jW1,n(r)i and jW2,n(r)i are identical, the
T1–T2 and T2–T2 spectra have diagonal peaks only.

(c) The spectra can contain peaks with negative amplitudes, as
was showed theoretically for 1D pores. Quite clearly, the
ILT algorithm available to the NMR spectroscopists at the
moment does not allow observation of such peaks experi-
mentally. We shall attach particular attention to whether
these negative peaks are merely occasional minor faults,
which can be ignored, or systematically encountered major
features of the relaxation correlation spectra, to take into
account in analysis.

4. Results and discussion

Unfortunately, the above-mentioned expressions have not, we
believe, been exploited enough and we now show that they can in-
deed provide much more information on general features of the
spectra. For the sake of simplicity, we shall limit ourselves in what
follows to the case of non-degenerated relaxation states knowing
that the results obtained below can be easily extended to the more
general case. Taking into account formal similarity between the T1–
T1 and T2–T2 spectra, we shall hereafter discuss the T1–T2 and T2–T2

spectra only.

(d) The sum of the intensities of all peaks in the spectrum is pre-
served, i.e. independent of the durations of the relaxation
periods. This conservation law is deduced from the closure
relation

X

n

jWa;nihWa;nj ¼ Id ð7Þ

by writing
X

n;m

ST1�T2 ðn;mÞ ¼ m0h1j1i ¼ M1ð0Þ ð8Þ

and
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X

n;m

ST2�T1 ðn;mÞ ¼ m0

X

n

h1jW1;ni2 expð�smix=s1;nÞ

¼ M1ðsmixÞ ð9Þ

and noting that h1j1i is the volume of the fluid. Thus the over-
all intensity of the T1–T2 spectra is equal to the total magnet-
isation of the system at equilibrium and that of the T2–T2

spectra is equal to the magnetisation that would remain,
had the system been subject to spin–lattice relaxation during
the mixing period Tmix only.
(e) The projection of the T1–T2 spectrum on to one of the coor-
dinate axes is equal to the corresponding 1D spectrum:

X

n

ST1�T2 ðn;mÞ ¼ m0h1jW2;mi2 ¼ ST2 ðmÞ ð10Þ

and
X

m

ST1�T2 ðn�mÞ ¼ m0h1jW1;ni2 ¼ ST1 ðnÞ ð11Þ
(f) A spin–lattice relaxation eigen-mode that gives rise to no
peak in the 1D spectrum will produce neither diagonal nor
cross-peaks in the 2D T1–T2 and T1–T1 spectra. Alike a
spin–spin relaxation eigen-mode that gives rise to no peak
in the 1D spectrum will produce neither diagonal nor
cross-peaks in the 2D T1–T2 and T2–T2 spectra. This can be
inferred, e.g., by noting that
ST1�T2 ðm;n0Þ ¼ ST2�T2 ðm;n0Þ ¼ ST2�T2 ðn0;mÞ ¼ 0 ð12Þ

for any m, when for a certain mode jW2;n0 i the intensity
ST2 ðn0Þ ¼ 0 and so h1jW2;n0 i ¼ 0.
(g) All diagonal peaks in the T1-T1 and T2–T2 spectra have posi-
tive amplitudes, as they can be expressed as a sum of only
positive terms, e.g.
ST2�T2 ¼ m0

X

p

h1jW2;ni2hW2;njW1;pi2 expð�smix=s1;pÞ ð13Þ
Fig. 1. The computer-simulated T1–T2 spectrum of the model porous system of
Fig. 3 The positive and negative peaks are coloured in red/yellow and blue
respectively. The normalised amplitude of some peaks is indicated. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
(h) Unless the spin–lattice and spin–spin relaxation modes are
identical, there will be always peaks with negative amplitude
in the T1–T2 spectra. To see this, we note that it is always pos-
sible to choose bases jW1,ni and jW2,ni for which h1jW1,niP 0
and h1jW2,niP 0 . Most often these inequalities are strict.
Moreover, the scalar products un,m = hW1,njW2,mi are the coef-
ficients of the unitary matrix U = (un,m) that gives the expres-
sions of modes jW1,ni in the base of the modes jW2,ni. This
matrix satisfies the fundamental property UtU = Id. When
the two sets of modes are different, U can not be diagonalised
by simply swapping its lines and columns, and has necessar-
ily negative coefficients, i.e. there exist numerous indices
(n0,m0) for which hW1;n0 j W2;m0 i < 0. The intensity of the corre-
sponding cross-peak will be negative:
Fig. 2. The computer-simulated T2–T2 spectrum of the model porous system of
Fig. 3 The positive and negative peaks are coloured in red/yellow and blue
respectively. The normalised amplitude of some peaks is indicated. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
ST1�T2 ðn0;m0Þ ¼ m0h1jW1;n0 ihW1;n0 jW2;m0 ihW2;m0 j1i 6 0 ð14Þ

where equality takes place when h1jW01;ni ¼ 0 or h1jW2;m0 i ¼ 0
only. This would happen, should j1i itself be a relaxation
mode jWa,ni which case it would be orthogonal to all other
modes jWa,ni. This situation is, though, of no practical interest,
as then only one mode is observable. Another situation where
there may be numerous modes orthogonal to j1i is that of a
system with a symmetry that relates two families of relaxa-
tion modes, i.e. symmetrical and so ‘observable’ modes, on
the one hand, and anti-symmetrical unobservable modes, on
the other hand. It is then possible to apply the arguments
developed above to the subspace of symmetrical modes only
and infer that such system will also necessarily give rise to
negative peaks. Negative peaks in a few particular systems
have already been reported in preceding theoretical studies
[21,22]. Our study shows that their presence in spectra is far
from being accidental: they constitute a rather major feature
of the spectra, whose experimentally observation has been
hindered by the lack of a more adequate ILT algorithm.
(i) If there is a non-diagonal peak (n, m) in a T1–T1 or T2–T2

spectrum, there exists at least one index p for which
h1jW2,ni hW2,njW1,pi–0 and hW1,pjW2,mi hW2,mj1i–0 and so
the spectrum will also contain the diagonal peaks (n, n)
and (m, m).

(j) If two diagonal peaks (n, n) and (m, m) give rise to a pair of
cross-peaks (n, m) and (m, n), the sum of the absolute values
of the intensities of the latter will never exceed that of the
former. This can be seen by setting a = hljW2,ni hW2,njW1,pi
and b = hW1,pjW2,mi hW2,mj1i in the relation jabj 6 (a2 + b2)/2
to deduce
jST2�T2 ðn;mÞj 6 ST2�T2 ðn;nÞ þ ST2�T2 ðm;mÞ
� �

=2 ð15Þ
The experimental data reported so far corroborates the state-
ment [18,21].



Fig. 3. Model porous system for which the spectra of Figs. 1 and 2 were simulated.
The inside of the pores is in white and the solid matrix is coloured in grey. The
dimensions of the system are 10 by 10 lm. Diffusion was assumed to be uniform
and isotropic: the diffusion coefficient was set to 10�10 m2/s. The surface relaxation
rates for calculation of the spin–lattice and spin–spin relaxation eigne-modes were
set to 4 � 10�5 and 10�4 m/s respectively. Both spin–lattice and spin–spin bulk
relaxation time inside the pores was set to 0.1 s.
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5. Experimental

Figs. 1 and 2 show, respectively, the T1–T2 and T2–T2 spectra we
simulated for the 2D model porous system of Fig. 3. We computed
fifty eigen-modes and values using the finite difference approach
[25], and we introduced them into Eqs. (5) and (6) to calculate
the spectra. We coded our algorithm in Fortran 95 programming
language. The spectra feature several of the structural properties
established above. The diagonal peaks in the T2–T2 spectrum have
positive amplitude, as could be expected from (g). The T2–T2 spec-
trum is symmetric with respect to its diagonal, as had been pre-
dicted in (a). Most importantly, both T1–T2 and T2–T2 spectra
contain negative components. A detailed description of simulation
of the 2D relaxation spectra and discussion of their properties will
be the subject of a separate manuscript.

6. Conclusions

We demonstrated how useful the eigen-modes formalism can
be in elucidating fundamental properties of 2D ILT spectra of
diffusive systems. Several of such properties were thus discovered.
Knowing these properties can help to identify flaws in design of
NMR experimental schemes and to anticipate defects that can be
introduced by the presently available ILT algorithm in such spectra.
Specifically, we pointed out that there is a limit to the cross-peak
intensities that can be achieved experimentally. Finally, the most
striking inference we could draw is that the negative components,
previously noticed in a few theoretical studies, are an intrinsic fea-
ture of all T1–T2 spectra, thus underlining a great necessity to pur-
sue efforts in developing more adequate algorithms for ILT.
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